Seismic Hazard and Performance for Operating NPPs in Taiwan

Yuan-Chieh Wu September 24, 2013 ENSREG Review Meeting

Outline

- Seismicity, Geologic Characteristic and Tectonic Framework
- Geo-Science Data Updated and Source Characterization for Seismic Hazard Analysis
- Preliminary Probabilistic Seismic Hazard Analysis Result
- Seismic Performance and Strategy for Reducing Risk
- Conclusion

Nuclear Power Plants in Taiwan

Chinshan

Reactor: BWR-4 Capacity: 636MW × 2 Commercial start Unit 1: Dec. 1978 Unit 2: July 1979

Reactor: BWR-6 Capacity: 985MW × 2 Commercial start Unit 1: Dec. 1981 Unit 2: Mar. 1983

行政院原子能委員會核能研究所 Institute of Nuclear Energy Research

Reactor: ABWR Capacity: 1350MW × 2

Reactor: PWR Capacity: 951MW × 2 Commercial start Unit 1: July 1984 Unit 2: May 1985

Nuclear Seismic Hazard Technique Development in Taiwan

n To achieve worldwide new nuclear standard, INER upgrade domestic seismic abilities on geological investigation and Seismic Hazard Analysis in TaiPower's project and National Science Foundation's Project in recent years.

3D site response considering dipping bedrock

Offshore Seismic Reflection

2010	2011	2012		2013	2	014	
Planning	Geological In	vestigation	Level 2 PSHA	2 Extended Inves Level 2 PSHA	stigation, Update	Leve	el 3 PSHA (Proposed)

Global Seismicity and NPP Location

Source: USGS

Each yellow (35-70 km deep) and orange (less than 35 km deep) dot represents an earthquake

- •Worldwide map of nuclear power plants and earthquake
- •4.5+ magnitude earthquake since to 1973 around 174,000 in total
- •The location of 248 NPPs
- Source: mapdt.com

Three Dimensional Earthquake Data

Tectonic Framework around Taiwan

Extension Environment for Northern Taiwan

Volcano Map

Maximum Earthquake Potential Considered in NPP1 & NPP2 SSE

Active Fault Map Updated by CGS

行政院原子能委員會核能研究所

Recent Offshore Geology Study

About 5 years ago, marine geology investigation conducted by Central Geologic Survey shows offshore faults distributed near NPP

Henigebu Antiform

李珀儂 , 2008

富音 角海域海洋地質 图(试测) MARTINE GEOLOGICAL MAP OF FUGUELIJAO-HARYU (TEST)

Updating Geo-data and SHA Plan

Contributor in Updating PSHA

Seismic Hazard Curve, Ground Motion Response Spectra and Time History

New Geological Investigation Result for Northern NPPs

Second Phase Investigation for SanChiao Fault

Current SanChiao Fault Parameters (1)

Parameter	Description		
Companyation	Tatal	North Segment	Minimum distance to NPP1:
Segmentation	Total	South Segment	6.95km
Total		North Segment 61 (Sea Region: 40km)	Minimum distance to NPP2: 4.35km
Length (km)	74	South Segment 13	Additional 40 km or more is
Depth (km)	15		estimated and under surveyed in
$A roo (l m^2)$	Total	North Segment 1632	current geological investigation
Area (km ²)	1980	South Segment 348	cui rent geologicui investigation
Dip Angle (degree)	0~1 km : 82 degree 1~3 km : 75 degree 3~6 km : 60 degree 6~9 km : 45 degree 9~12 km : 30 degree 12~15 km : 15 degree		
Mechanism	Normal Fault (Caused by the continue movement of Okinawa Trough)		

SanChiao Fault Parameters (2)

Parameter	Description		Note	
	North Segment	0.13 (This Study)	Logging and dating.	
Long-term slip rate	South Segment	0.69~1.80 (Vertical Direction) (Huang et.al, 2007)		
(IIIII/yr)		1.2~1.5(Vertical Direction) (Chen et.al., 2008)	Logging and dating in Taipei Basin	
		2.3~3.3(Vertical Direction) (Chen et.al., 2010)	Logging and dating in Taipei Basin	
	Total 7.3	North Segment 7.2	$MW = 4.86 + 1.32 \log L$,	
		South Segment 6.3	s=0.34 (Wells and Coppersmith, 1994)	
		North Segment 7.2	$MW = (1.32 \pm 0.122) \log (L)$	
Max1mum magnitude (MW)	Total 7.3	South Segment 6.3	$+(4.817 \pm 0.132)$ (Wu , 2000)	
		North Segment 7.1	$\log Le = (1/2) \log M0 - 8.08$	
	Total 7.2	South Segment 6.2	$MW = (2/3) \log MO - 10.7$ (Yen and Ma, 2011 ; Kanamori, 1977)	
Latest movement	1694 (felt only in Taipei Basin)		康熙台北湖Historic Earthquake	

NPP1 Soil/Rock Profile

NPP2 Soil/Rock Profile

Investigation Result for NPP3

HengChun Fault Parameter

•		Parameter	Description	
Parameter	Description		4.2 ±0.2 (Vertical Direction)(Chen, 2010)	
Segmentation	No		7.5 ±0.14 (Vertical Direction)(Chen, 2006)	
Length (km)	41(Sea Region: 21 km)		(Vertical Direction) (This Study) 0.7 mm/yr (West HengChun); 1.5-4.9 mm/yr (East HengChun)	
	15.96	Long-term slip		
Width (km)	21.21			
Depth (km)	15		1.0 mm/yr (West HengChun);	
	654.5		1.6-5.2 mm/yr(East HengChun)	
Area (km ²)	869.7		7.0	
Dip Angle	70/East (East HengChun)		$MW = 4.86 + 1.32 \log L$ (Wells and Coppersmith, 1994)	
(degree)	45/East (West HengChun)	Maximum	7.0 MW- (1.32 +0.122) log (L) +(4.817 +	
Mechanism Reverse		Magnitude (Mw)	0.132) (Wu , 2000)	
Ü Currently, slip rate is under review and many conflicts happen between dating data and			6.9 log Le = (1/2) log M0 - 8.08 Mw = (2/3) log M0 - 10.7 (Yen and Ma, 2011; Kanamori, 1977)	

energy release rate. 行政院原子能委員會核能研究所 Institute of Nuclear Energy Research

NPP3 Soil/Rock Profile

Soil Dynamic Properties

Steps on Seismic Hazard Analysis

Ground Motion Prediction Equation

- Abrahamson, N., Silva, W., "Summary of the Abrahamson & Silva NGA Ground-Motion Relations", Earthquake Spectra, Volume 24, No. 1, pages 67–97, February 2008.
- **Boore, D. M., Atkinson, G. M., "Ground-Motion Prediction Equations for the Average** Horizontal Component of PGA, PGA, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s", Earthquake Spectra, Volume 24, No. 1, pages 99–138, February 2008.
- Campbell, K. W., Bozorgnia, Y., "NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGA, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10s", Earthquake Spectra, Volume 24, No. 1, pages 139–171, February 2008.
- Chiou, B. J., Youngs, R. R., "An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra", Earthquake Spectra, Volume 24, No. 1, pages 173–215, February 2008.Idriss,
- I. M., "An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated By Shallow Crustal Earthquakes", Earthquake Volume 24, No. 1, pages 217–242, February 2008.
- Lin, P. S., and C. T. Lee, "Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan", Bull. Seism. Soc. Am. 98, 220-240, 2008.
- Lin, P. S., Lee, C. T., Cheng, C. T. and Sung, C. H., "Response spectral attenuation relations for shallow crustal earthquakes in Taiwan", Geology, 121 150–164, 2011.
- 中興顧問社,「反應譜衰減律建置報告」,行政院原子能委員會核能研究所委託核電廠 地質調查與地震危害度參數研究報告,2012。(TNGA Prediction Equation)
- 國家地震工程中心,「面震源與衰減律參數研究及核電廠地盤反應量測」,行政院原子 上能委員會核能研究所委託研究報告,2011。(NCREE2011 Prediction Equation)

GMPE Development

- At current status, some local GMPEs still have larger sigma and have some insufficiency, particularly in normal fault prediction due to lack of data
- INER recently sponsored the local developer to build up GMPE for the normal fault related to Okinawa Trough
- In the future, if possible in next phase, Kappa or Single Site Sigma would be considered in GMPE to reduce the aleatory uncertainties

Performance-Based Ground Motion

pFor long-term consideration on plant operation and safety analysis, NRC RG
1.208 is adopted to become the candidate for reviewed ground motion
pRisk and plant fragility embedded in performance-based ground motion
response spectra (GMRS) through more than 15 years NRC's research

Risk Assessment

GMRS meet the requested
 Information for seismic risk
 assessment by NRC after
 Fukushima event

Significant Seismic Source Identification

NIDDO

• DSHA performed to identify significant source

NPP1				NPP2			
Source Name	Mmax (Mw)	Min. Dist.(Km)	PGA (g)	Source Name	Mmax (Mw)	Min. Dist.(Km)	PGA (g)
SanChiao Fault	7.6	6.9	0.370	SanChiao Fault	7.6	4.8	0.470
ST-II	6.9	15.0	0.177	ST-II	6.9	4.4	0.321
Subduction Interface	8.2	138.7	0.068	Subduction Interface	8.2	127.0	0.074
Subduction Intraslab	7.6	72.6	0.115	Subduction Intraslab	7.6	60.5	0.123

NPP3	Source Name	Mmax (Mw)	Min. Dist.(Km)	PGA (g)
	HengChun Fault	7.3	1.11	0.597
	HT-II	6.2	2.92	0.454
	Subduction Interface	7.9	15.0	0.218
	Subduction Intraslab	7.6	35.5	0.168

Logic Tree for NPP1 and NPP2

Logic Tree for NPP3

From announcement of Central Geologic Survey, the latest movement of HengChun Faut is more than 10,000 years ago, and it is categorized as second class active fault. However, Energy release from slip rate is too fast and not consistent with historic earthquake data.

Seismic Hazard Curves for NPP1

Preliminary Result based on sensitivity study

Fractile Hazard Curve for NPP1

Preliminary Result based on sensitivity study Fractile(5%, 16%, 50%, 84%, 95% & mean)

Frequency = PGA

UHRS at Foundation Level for NPP1

Frequency (Hz)	1E-4	1E-5
0.1	0.010	0.030
0.13	0.015	0.047
0.16	0.022	0.066
0.2	0.034	0.095
0.25	0.045	0.119
0.333333	0.070	0.175
0.4	0.092	0.223
0.5	0.128	0.301
0.63	0.181	0.409
0.79	0.244	0.538
1	0.331	0.711
1.25	0.422	0.876
2	0.682	1.351
2,5	0.803	1.566
3.33333	0.949	1.833
4	1.007	1.919
5	1.019	1.894
6.3	0.982	1.797
7.5	0.927	1.696
10	0.811	1.495
12.5	0.706	1.299
16	0.600	1.109
20	0.533	0.989
25	0.490	0.907
30	0.463	0.858
40	0.435	0.806
50	0.418	0.772
63	0.413	0.761
80	0.408	0.751
PGA	0.404	0.742

Preliminary Result based on sensitivity study

UHRS

Seismic Hazard Curves for NPP2

Hazard Curve

Hazard Curve

Preliminary Result based on sensitivity study

Frequency = 1Hz

Frequency = PGA

UHRS at Foundation Level for NPP2

Frequency (Hz)	1E-4	1E-5
0.1	0.011	0.032
0.13	0.017	0.053
0.16	0.024	0.074
0.2	0.036	0.107
0.25	0.049	0.132
0.333333	0.074	0.194
0.4	0.096	0.242
0.5	0.131	0.323
0.63	0.185	0.444
0.79	0.250	0.590
1	0.339	0.791
1.25	0.427	0.994
2	0.709	1.575
2.5	0.856	1.879
3.33333	1.028	2.223
4	1.111	2.378
5	1.176	2.501
6.3	1.181	2.516
7.5	1.152	2.476
10	1.055	2.311
12.5	0.912	1.983
16	0.769	1.611
20	0.682	1.423
25	0.620	1.300
30	0.581	1.219
40	0.538	1.126
50	0.513	1.072
63	0.504	1.045
80	0.495	1.019
PGA	0.486	0.997

Preliminary Result based on sensitivity study

UHRS for NPP3

Data	Scenario	AEF=1E-4	AEF=1E-5	
		PGA(g)	PGA(g)	
Slip rate listed in Geological Investigation Report	M1	1.428	2.345	
Latest movement	M2	0.398	1.058	
occurred from 10,000 to 40,000 years ago	M3	0.347	1.031	
Latest movement occurred 10,000 years ago	M4	0.433	1.084	

Input Motion for Site Response Analysis

Free-Field Ground Surface UHRS for NPP1

Free-Field Ground Surface UHRS for NPP2

1E-4 Mean UHRS

1E-5 Mean UHRS

GMRS

Seismic Performance using GMRS

- Based on NRC's research, GMRS can let plant have the following performance :
- (1) less than about a 1% probability of unacceptable performance for the site-specific response spectrum ground motion
- (2) less than about a 10% probability of unacceptable performance for a ground motion equal to 150% of the site-specific response spectrum ground motion
- **Ü**Target Performance Goal, P_F : Target annual probability of exceeding the 1 E-05 frequency of onset of significant inelastic deformation (FOSID) limit state.

Figure 2. Comparison of the Mean 1 E-04 and 1 E-05 Uniform Hazard Response spectra and the Performance-Based Ground Motion Response Spectrum (GMRS)

Strategy for Reducing Seismic Risk

- TPC are performing SMA and SPRA, and seismic upgrade of structure, system, and components are on-going currently
- From ground motion aspect, soil improvement approach may be suitable for NPP2 and pile foundation retrofit is good for surface-found structures to reduce seismic risk

SSHAC Level 3

- To enhance uncertainty integration in PSHA, SSHAC Level 3 provides the successful example for technically defensible interpretation on hazard calculation result, and INER strongly recommend to do
- TPC are willing to support Level 3 activities, particularly for solving the issue of HengChun Fault

Summary

- Current seismic hazard analysis meets international standard to identify and characterize seismic source and ground motion model.
- Using RG 1.208, TPC can obtain better risk level from GMRS based on NRC's research, and the margin and risk assessment can be performed.
- The advanced integration and evaluation approach, SSHAC Level 3, has been introduced into Taiwan by INER, and local experts welcome it and are willing to cooperate with foreign senior experts to conduct it when the enforcement of NTTF is requested.

Thank you for your attention