

1969

1980

RWST

1990

Bunker Systems

Cont.

Filtered

Vent

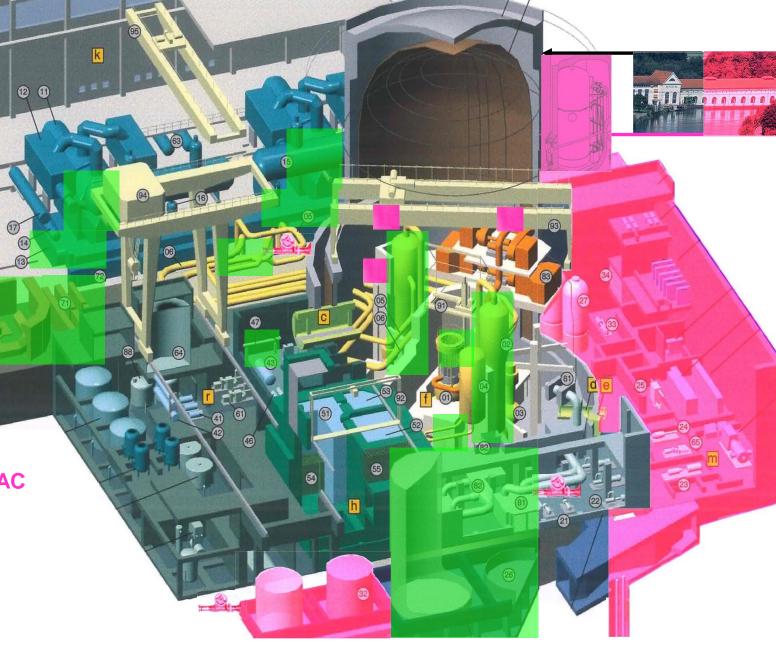
SGs

Condensators

HP-Turbines

2. Hydro Emerg. AC

MCR


Important Valves

Emerg. FW

FW-Connections

RPS

 $\begin{array}{c} \textbf{2000} \\ \textbf{H}_2\text{-Recombiners} \end{array}$ **Turbine Control**

Backfits

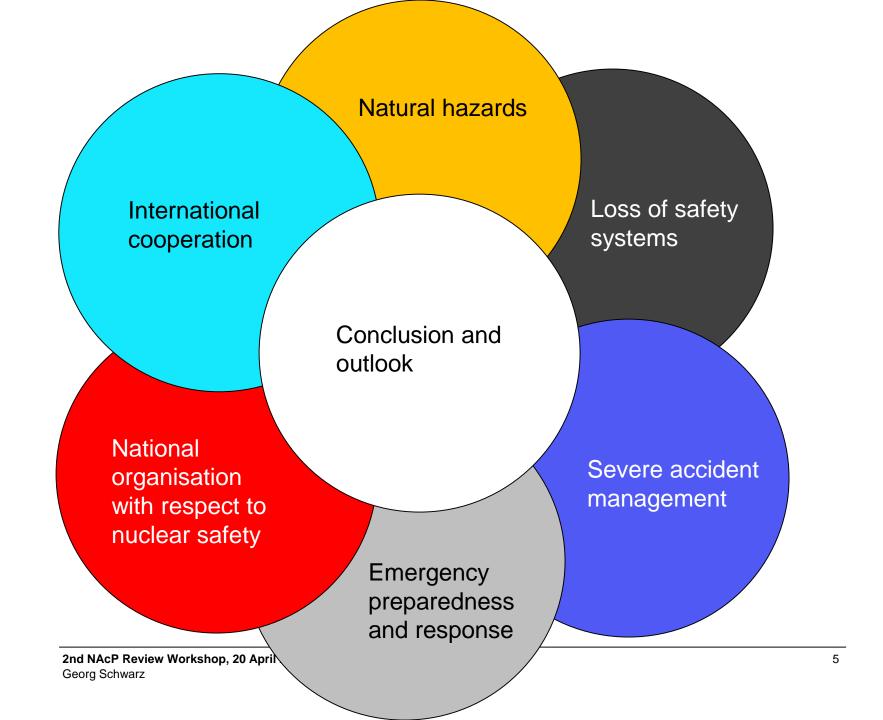
Renewals

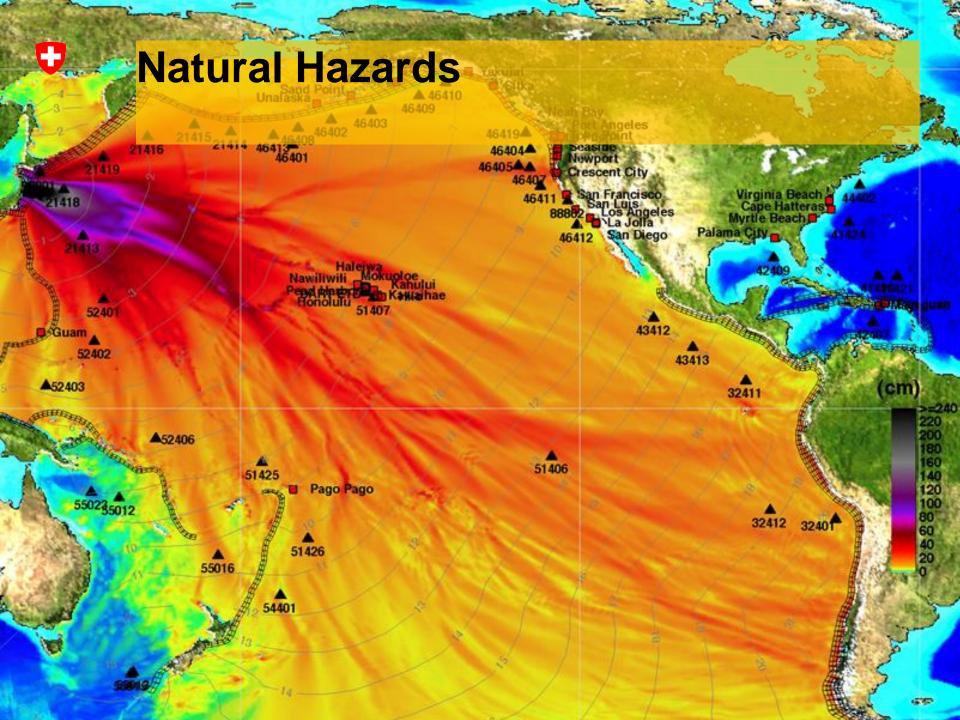
Implemented before Fukushima

Loss of safety systems

- All Swiss NPPs have bunkered EDG and ECCS (Backfitted in KKB and KKM in the early '90s)
- KKB, KKG, KKL have diverse heat sinks

Severe accident management


- All NPPs have backfitted FCVS in the early '90s
- All NPPs have SAMGs for all plant states
- SAMGs are regularly validated, trained and exercised
- All NPPs have Level 1 & 2 PSAs for all plant states
- Severe accident studies for all NPPs



Post Fukushima actions

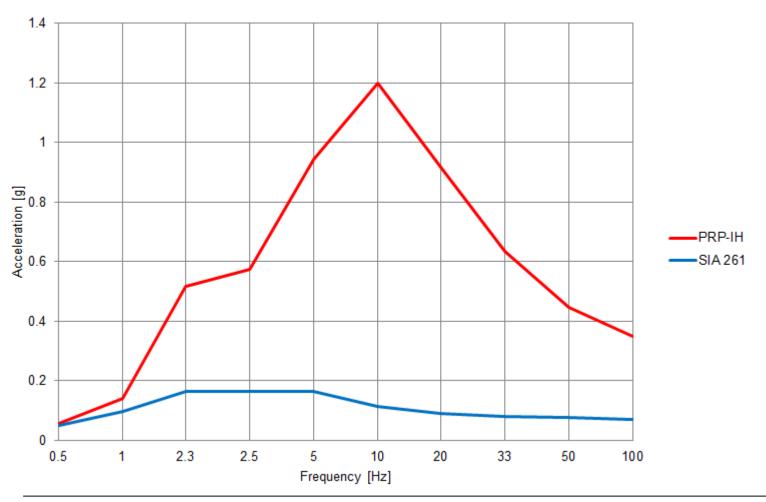
Phase 1 Lessons learned Screening analysis Backfittings and measures Immediate measures EU stress tests Phase 2 Backfittings and measures Design re-evaluation Topical inspections Phase 3 Backfittings and measures In-depth evaluation Margin analysis

Seismic hazard

Reassessment of the seismic hazard

- SED77: First probabilistic study (1977)
- PEGASOS: PSHA SSHAC Level 4 (2004)
- PRP-IH: PRP Intermediate Hazard (2011)
- PRP: PEGASOS Refinement Project (2013)

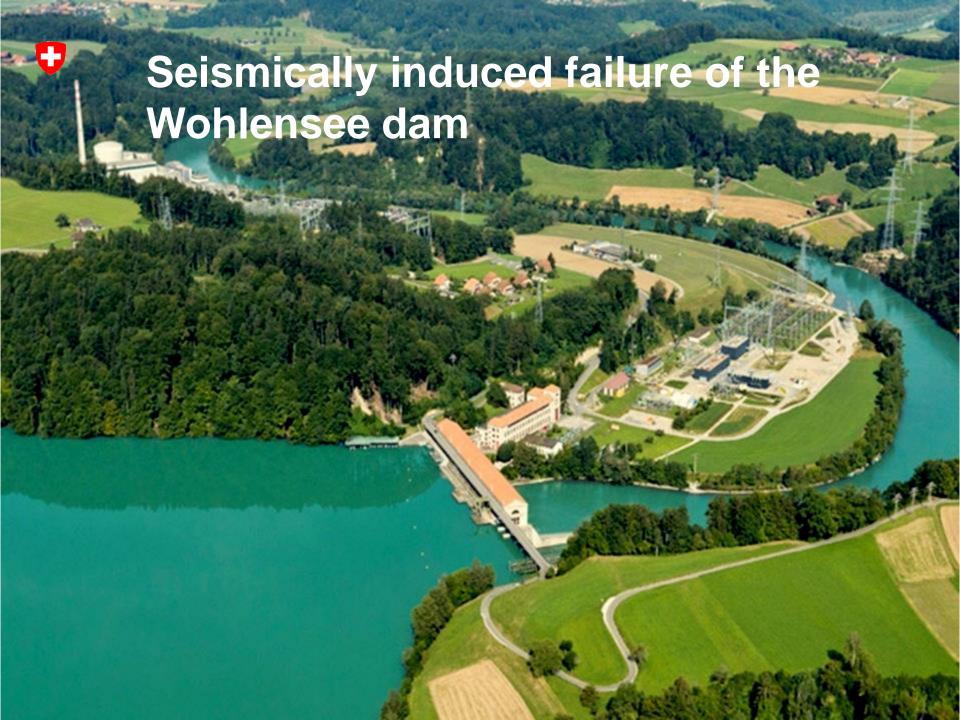
Definition of the new design base hazard

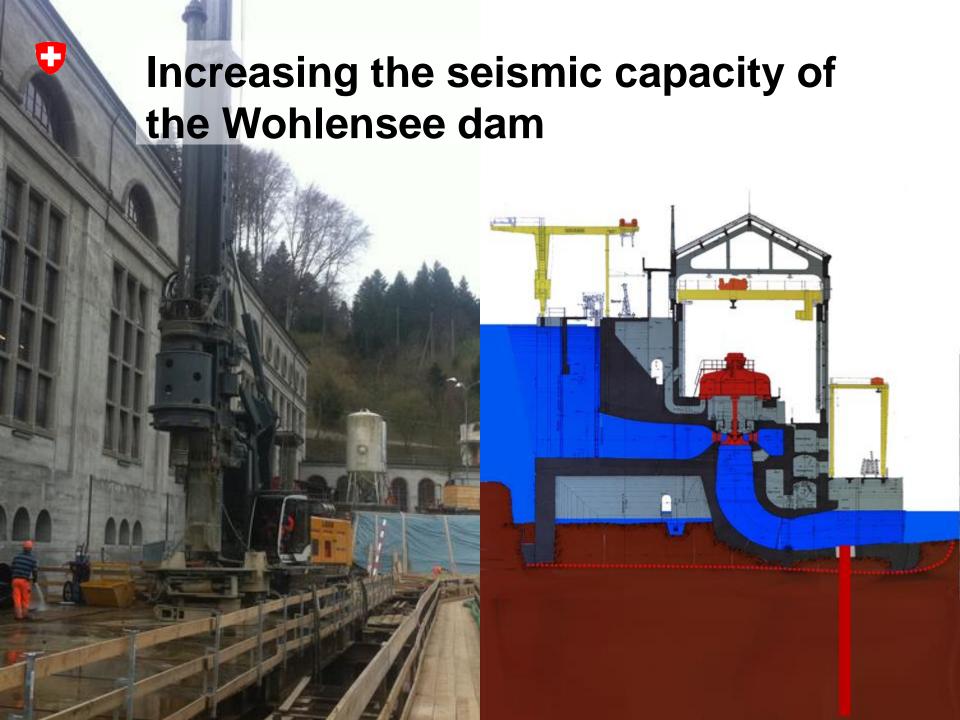

- Review of the PRP results (2015)
- Regulatory order (End of 2015)

Definition of the methodology

 Detailed definition of the methodology for the safety case demonstration (2014)

Comparison of Spectra PRP-IH with SIA 261


Seismic design reevaluation


Seismic safety case

- Seismic safety case for reactors and SFPs with 10'000year earthquake (2012)
- Seismic safety case for the Wohlensee dam (2012)

In depth analysis

- Reevaluation of seismic robustness of containment isolation, primary circuit isolation and FCVSs (2013)
- Report on pros and cons of automatic SCRAM on earthquake signals (2014)
- Evaluation of the safety margin analyses and order of improvement measures (Spring 2015)

Increasing seismic robustness

Backfittings

- Reinforcement of the Wohlensee dam (KKM, 2014)
- Reinforcement of containment isolation and FCVS (KKL, KKM, 2014)
- Reinforcement of EDG (KKG, 2015)
- Reinforcement of buildings (KKB, 2015)
- Measures against seismically induced internal flooding (KKM, 2015)
- Backfitting of a fixed motor driven pump to feed river water into the RPV (KKM. 2016)
- Reinforcement of electrical cabinets (KKG, 2017)

Q

Flooding hazard

Flooding design reevaluation

- Flooding safety case with 10'000-year flood (2011)
- Additional safety cases considering clogging and debris transport (2013)
- Evaluation of the safety margin analyses and order of improvement measures (Spring 2015)

Backfittings

- Reinforcement of the water intake structure (KKM, 2011)
- Mobile flooding protection (KKG, KKM, 2011)
- Flood protection wall (KKG, 2014)
- Reinforcement of protected volume (KKB, KKM, 2015)

Extreme weather design re-evaluation

Screening analysis

 First qualitative, conservative safety case within the EU stress tests (2011)

Extreme weather safety case

- Update of 10'000-year hazards for extreme wind, tornado, rain, snow and high/low temperatures (2014)
- Safety cases for extreme weather conditions (2015)

In depth analysis

- Safety margin analysis for the instantaneously acting hazards (wind, tornado, rain) (End of 2015)
- Strategies to handle long lasting extreme weather situations e.g. periods of extreme heat (End of 2015)

Station blackout

Immediate measures

- Backfit of various Accident Management DGs for battery charging and feeding of a safe shutdown path (2012)
- Backfit of external hook-up points for DGs (2012)

Design reevaluation

- Topical inspections on long lasting SBO (2011)
- Measures for increased autarchy of electrical power supply (2013)

In depth analysis

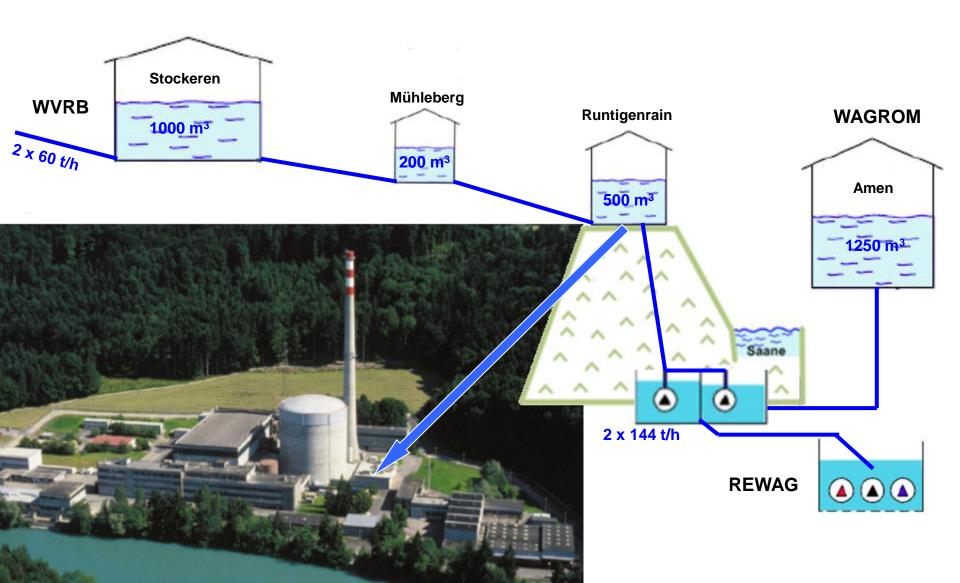
 Analyses on restoring containment integrity during outage in case of SBO (Summer 2015)

Loss of ultimate heat sink

Immediate measures

- Reinforcing the water intake structure of the bunkered emergency systems (KKM, 2011)
- Backfit of an external hook-up point for cooling water (KKM, 2011)

Design reevaluation


Reevaluation of the cooling water supply (2011)

Backfittings

 Backfitting of a diverse cooling water supply (KKM, Summer 2015)

Water supply by drinking water network

Spent fuel pools

Immediate measures

 Backfit of external hook-up points for water injection (2012/2013)

Design reevaluation

 Reevaluation of the SFP cooling systems and the protection of SFPs against external events (2012)

Backfittings

- Backfit of additional temperature and level measurements for the SFPs (2014)
- Backfit of additional SFP-cooling systems designed against DBE and DBF (KKB, 2017, KKM, 2020)

Mobile equipment

Immediate measures

Set up of the external storage facility Reitnau (2011)

Concept review

- Review of the operational concept for Reitnau (2012) and optimization of the storage concept for mobile equipment (including on site storage of equipment, 2014)
- Definition of design requirements on AM equipment (2014)
- In depth review of the timing of operator actions (2015) and effects of non-nuclear hazardous substances (End 2015)

Testing

 Testing of the Reitnau equipment and procedures during the general emergency drill (2013)

External storage facility Reitnau

Filtered containment venting system and hydrogen management

Design reevaluation

- Topical inspections on filtered containment venting systems FCVS (2011)
- Protection against hydrogen in the SFP area (2012)
- Safety case for hydrogen hazard (Containment and reactor building) (2014)

Backfittings

- Improvements on hardware and procedures for FCVSs (2012) and SAMGs (2015)
- Upgrading of the FCVS of KKG (Iodine filter. seismic robustness (2017)
- Backfitting of additional PARs and H₂ instrumentation (2017)

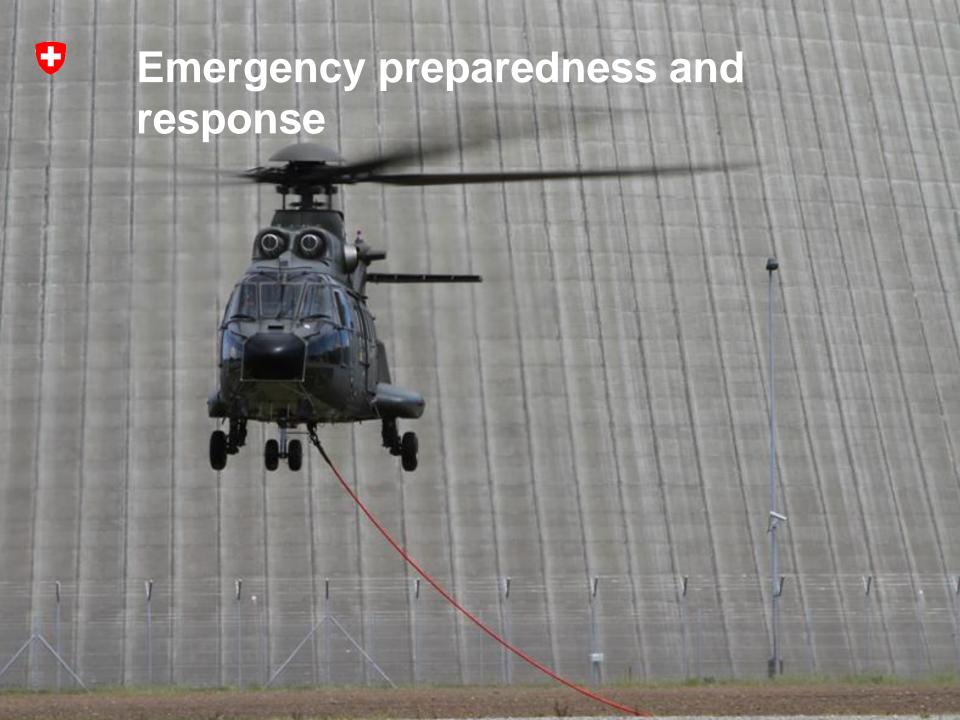
Long-term operability of the emergency organizations

Concept review

- Topical inspections on the habitability of the on-site emergency centers (2012)
- Review of the updated concepts for the long-term operability of the emergency organizations (2013)
- Review of the availability of sufficient radiation protection personnel (2015)

Improvement measures

- Provisions for additional work and protection equipment for the emergency organizations (offsite, 2011 and onsite, 2014)
- Fall-back communication system (2014)
- Set up of external emergency centers (2016)

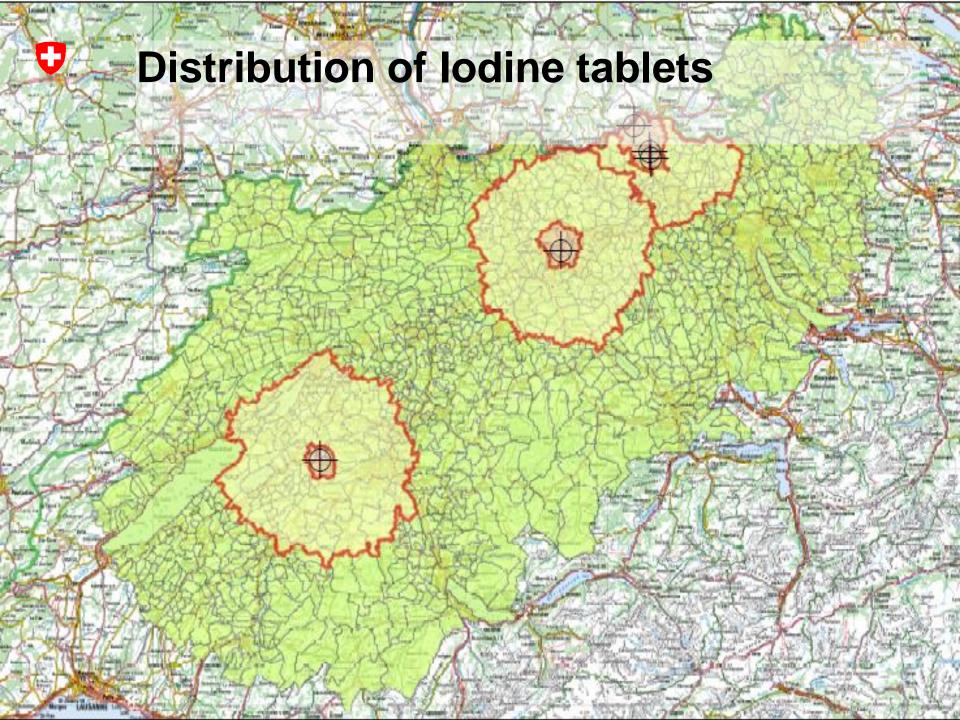

Large volumes of contaminated water

Concept review

- Review of post accident contamination and treatment of large volumes of contaminated water in DBA (2013) and BDBA (End of 2015)
- Review of conventional hazards during BDBA (2015)
- Review of the reporting channels of the Cantons and the alarming criteria (2015)

Improvement measures

- Installation of a new monitoring system of the river water below the NPPs (2015)
- Backfitting of extinguishing water retention pools (KKG, KKL, 2014)


Concerted review of the Swiss emergency protection measures

Interdepartmental working group IDA-NOMEX

- Mandated by the Government (2012)
- Experts from 6 federal departments, the federal chancellery, cantons and ENSI
- 56 organizational and legislative measures identified, tasks assigned to the lead of different authorities

Tasks under ENSI's lead

- Treatment of severely irradiated persons (2012)
- Availability / redundancy of measurement and forecasting systems (2013)
- Assessment of the reference scenarios (2014)
- Assessment of the zone concept (2014)

Regulatory body

Functions and responsibilities

- Establishment of ENSI as a formally and effectively independent regulator for nuclear safety and security (2009)
- Tightened independence requirements for the ENSI board and the Nuclear Safety Commission (2012)

Openness, transparency and communication

- Proactive communication strategy (2012)
- Increase of communication staff (2012)
- Information provided on a comprehensive web platform and social media (2013)
- Establishment of the Technical Forum on NPPs (2013)

Human and organizational factors

Safety culture

- Technical discussions with the operators on safety culture (2012)
- Report on ENSI's oversight of safety culture (2014)

Oversight culture

- Self assessment of the safety culture of the regulatory body (2013)
- Development of a new mission statement and a code of conduct for ENSI (2014)
- Measures to improve competence and professionalism (HCM, accreditation as inspection body, 2015)
- Fostering collaboration and self reflection (ongoing)

International peer review missions

International Regulatory Review Service (IRRS)

- Full scope IRRS mission to ENSI (2011)
- Follow up IRRS mission (2015)
- 24 out of 30 issues resolved
- Reports published

Operational Safety Review Team (OSART)

- OSART mission to Mühleberg NPP (2012)
- Follow up OSART mission (2014)
- All issues resolved
- Reports published

Global safety regime

Swiss Proposal to amend the CNS

- 2nd extraordinary CNS meeting (2012)
- CNS WG on Effectiveness and Transparency (2013)
- 6th CNS Review Meeting (2014)
- Diplomatic conference about the Swiss proposal (2015)
- Vienna declaration on nuclear safety (2015)

International communication mechanisms

- Bilateral agreements with all neighboring countries
- Participation in all relevant international information exchange networks

Operating experience feedback

OEF of operators

 Topical inspections on the operators process for the evaluation of international OEF (2012)

OEF of ENSI

- Member of the European Clearinghouse on NPP Operational Experience
- Review of ENSI's process for the evaluation of international OEF (2014)

Q

Conclusions

Systematic approach

- Stepwise refinement of the analyses in order to identify backfitting and improvement needs
- All topics of EU stress tests and 2nd extraordinary CNS meeting covered
- Tracing, planning and reporting in annually updated action plans

Results

- Because of the systematic backfitting programmes of the past, all Swiss NPP were on a good safety level
- The Fukushima follow up helped to identify remaining design weaknesses and has led to a significant increase of safety margins

Core damage frequency Mühleberg NPP

PSA model	CDF [1/year]
Base model 2012	1:40'000
Base model 2014	1:120'000
Model with backfittings	1:160'000

Completion of the action plan

Assessments

 All screening analyses, design re-evaluations, in-depth evaluations, margin analysis) are planned to be completed and reviewed by ENSI by end of 2015

Backfittings and improvement measures

 All backfittings and improvement measures are planned to be ordered ENSI by end of 2015

Reporting

 ENSI will issue a concluding report on the Swiss Fukushima action plan by mid of 2016

Implementation of backfittings and improvement orders

Completed backfittings and improvement measures

 All backfittings improvement measures identified so far are basically planned to be completed by end of 2015

Exceptions

- Backfitting of a fixed motor driven pump to feed river water into the RPV (KKM. 2016)
- External emergency centers (2016)
- Reinforcement of electrical cabinets (KKG, 2017)
- Additional PARs and H₂ instrumentation (2017)
- Upgrading of the FCVS of KKG (lodine filter. seismic robustness (2017)
- SFP cooling systems (KKB, 2017; KKM, 2020)

For more information please visit:

www.ensi.ch www.ifsn.ch

http://twitter.com/#!/ENSI_CH